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Abstract—The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-
dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal
development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid
exploration of these new complex data sets. The interplay of data visualization and clustering-based data classification leads to
improved visualization and enables a more detailed analysis than previously possible. We discuss 1) the integration of data clustering
and visualization into one framework, 2) the application of data clustering to 3D gene expression data, 3) the evaluation of the number
of clusters k in the context of 3D gene expression clustering, and 4) the improvement of overall analysis quality via dedicated
postprocessing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern
boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.
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1 INTRODUCTION

UNDERSTANDING the control of embryo development is a
fundamental question in biology. A cell’s unique fate is

determined by specific combinations of developmental
regulatory factors that form part of complex genetic
regulatory networks ultimately coordinating the expression
of all genes. As a result, the developing embryo exhibits an
extraordinarily complex set of spatial and temporal gene
expression patterns. The basic structure of the genetic
regulatory network is defined by the genome sequence.
However, we currently cannot adequately decipher this
information or correctly predict how patterns of gene
expression evolve.

The Berkeley Drosophila Transcription Network Project
(BDNTP) is generating multiple complementary data sets
to address these challenges using the early Drosophila
developmental regulatory network as a model. These data
sets include in vitro and in vivo DNA binding data for key
transcriptional regulators and, of particular relevance to this
work, three-dimensional (3D) gene expression data that
describes the spatial output of the network at cellular
resolution for multiple time points [1], [2].

A large variety of questions can be addressed using these
new 3D gene expression data sets [2], [3]. For some
analyses, such as logic-based network models, it is helpful
to have an objective description of the pattern of a gene at a
particular time point, i.e., to define which cells do or do not
express a gene. Analysis of the temporal dynamics of gene
expression, i.e., how patterns change over time, is essential
for gaining a deeper understanding of complex network
interrelationships. Knowledge of the input and output of a
network, i.e., the response of the gene expression network at
time t ¼ tiþ1 to the input of the expression levels of
regulators at time t ¼ ti, is paramount to identifying
regulatory interactions.
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To address these and other challenges, we need a flexible
visualization tool that allows for interactive exploration of
the data. Since Drosophila melanogaster has been used as a
model for genetic research for decades, there exists a large
accumulated body of knowledge about it. A tool designed
for the analysis of 3D gene expression data must therefore
allow researchers to incorporate this existing knowledge in
the analysis, for example, by providing ways to modify
analysis results and, thus, the visualization accordingly. The
tool must also capture the biological context of the embryo
and allow different subsets of the data (cells or gene
expression patterns) to be examined.

While visualization is a powerful approach to gain
deeper insights into such complex data sets, it is limited in
this case because the intricate and often subtle nature of
3D gene expression data makes visual detection of all
existing features very difficult. For example, a typical
feature of interest would be various groups of cells
behaving similarly with respect to the expression of several
genes. A human’s eye and mind, however, cannot readily
compute relative concentrations of gene products. Data
clustering has already proven to be very powerful at
revealing details from conceptually simpler forms of
expression data, such as that from microarray experiments,
that are not easily detected visually in raw data. Appro-
priately defining clustering parameters such as the number
of clusters, as well as validation and interpretation of
clustering results, is a nontrivial endeavor. To overcome
these difficulties in both visual analysis and data clustering,
we have adapted data clustering for 3D gene expression
analysis by integrating it into PointCloudXplore (PCX). PCX
is a visualization tool that features linked physical and
information visualization views specifically developed for
visualization of 3D gene expression data [4], [5].

Sections 2 and 3 present essential biological background
necessary for understanding this work. After describing our
integrated system in detail in Section 4 and evaluating the
question of how to choose the number of clusters k in
Section 5, we discuss, using a few example cases, how our
integrated data clustering and visualization tool can be used
in practice to address three relevant questions: 1) How can
we usefully divide cells into distinct components of a gene’s
expression pattern (Section 6)? 2) What is the temporal
variation of a gene expression pattern (Section 7)? 3) What
components of a gene’s expression pattern are related to the
expression patterns of the regulatory factors that control it
(Section 8)? In Section 9, we present our conclusions and
describe future plans.

2 BACKGROUND

All cells of living organisms contain DNA, which encodes
the genetic information of the organism. Genes are
functional subsequences of the DNA. Most genes code
for the amino acid sequences of proteins and additional
cis-regulatory elements that help to determine in which
cells the gene’s product will be expressed. An important
class of protein coding genes are developmental regulatory
transcription factors that function by binding to cis-regulatory
sequences in many genes and direct their patterns of gene
expression. Complex genetic regulatory networks are built up

where cascades of differently expressed transcription
factors ultimately regulate all genes’ expression. These
networks guide the development of all living organisms.
The characteristic spatial and temporal patterns of reg-
ulatory transcription factors define the body plan of the
developing animal (see Fig. 1).

To provide a quantitative description of these patterns of
gene expression in the early Drosophila embryo, the BDTNP
has developed a data processing pipeline for extracting
precise measurements of spatial gene expression patterns in
3D space. Drosophila embryos are first fluorescently stained
and imaged using two-photon microscopy (see Fig. 1a).
Each image is segmented to extract information such as
nuclear positions and volumes, as well as expression values
in the neighborhood of each nucleus for the chosen genes
[2]. The resulting PointCloud file contains information about
either the protein or mRNA expression of the genes. It is not
practical to obtain the expression of more than a few genes
in a single embryo, due to the limited number of different
distinguishable fluorophores as well as the difficulty in
adding multiple labels to embryos.

To allow relationships between multiple transcription
factors and their target genes to be compared in a common
coordinate framework, PointClouds are registered into a
Virtual Embryo using both morphology and a common
reference gene to determine cell correspondences [6], [7].
Because the spatial patterns of the genes change rapidly
during stage 5, we stage the embryos based on invagination
of cell membranes and group the PointClouds into six
temporal cohorts [2].

For temporal comparisons, different cohorts are matched
using the cellular flow fields that predict the positions of
individual cells at each time point [3], [7]. This method
enables us to follow gene expression levels within a
particular cell over time using only data measured in fixed
embryos. Hence, each cell in the Virtual Embryo contains
gene expression levels for each of the six time steps. This
cellular-level link between embryos of different ages makes
it possible to study the development of gene expression
patterns over time, as well as to use an mRNA expression
pattern as an approximate substitute for a later protein
expression pattern, when suitable protein data is not yet
available [7].

Fig. 1b shows a 3D representation of a Virtual Embryo
with an average expression pattern using the BDTNP’s
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Fig. 1. (a) Three-dimensional images, each containing a whole embryo,
are transformed into PointCloud files containing information about cell
positions and the expression of the measured genes. Our visualization
tool, PCX, (b) uses a 3D physical model to visualize the embryo. (c) To
provide an overview of all cells in PCX, the embryo is projected onto a
rectangular plane using cylindrical projection along with annotations
indicating the anterior (A), posterior (P), dorsal (D), and ventral (V)
orientation of the embryo. Here, the expression pattern of the gene even
skipped (eve) is shown in red, and the pattern of snail (sna) is shown in
green.
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visualization tool PCX. To provide an overview of all cells
while preserving the relative spatial expression patterns,
PCX offers a second physical view in which a cylindrical
projection maps all cells onto a rectangular plane (see
Fig. 1c). For simplicity, here, we use this Unrolled View as
our standard physical embryo view. A 3D view can equally
be used to view embryos and developmental stages with
more complex morphologies than in the early Drosophila
embryo.

3 RELATED WORK

Data classification is the systematic grouping of data into
categories according to some criteria. Data clustering is a
class of techniques for unsupervised classification of data
samples (here, cells) into groups (clusters) of similar
behavior. Data clustering provides means for the automatic
discovery of data subclasses [8].

In some experimental contexts such as expression
microarrays, gene expression data is often represented as
a data matrix, where each gene corresponds to a row, and
each data sample (cell, microarray, experiment, or condi-
tion) corresponds to a column. Each matrix entry describes
the expression level of a gene in a specific experiment. In
these applications, data clustering has proven very useful to
classify expression data matrices and thereby identify
characteristic substructures of each matrix.

Gene expression data clustering can roughly be sub-
divided into three applications: 1) clustering of genes to
identify genes of similar function [9], 2) clustering of data
samples to identify, for example, different tumor cell types
[10], and 3) biclustering, i.e., clustering of genes and data
samples at the same time to find subgroups of genes and
data samples where highly similar activities are seen for the
genes in the subset of data samples [11].

Clustering results are most commonly visualized using
scatterplots, plots of statistics, and color table views with
columns and/or rows sorted with respect to the clustering.
The broad applicability of clustering to gene expression has
led to the development of several commercial and publicly
available tools for clustering and visualization of gene
expression data [12], [13], [14], [15], [16], [17]. However,
these tools are limited to what essentially are one-
dimensional (1D) analyses of gene expression in homo-
genized populations of cells. They do not take account of
spatial position or the complex relationship of expression
across neighboring cells and are consequently not suitable
for interactive visualization and exploration of 3D gene
expression data produced by the BDTNP.

Validation of clustering results and evaluation of an
“optimal” number of clusters k is an important problem in
clustering of gene expression data. A survey of computa-
tional cluster validation techniques for gene expression data
analysis is provided by Handl et al. [18]. Cluster evaluation
functions are commonly subdivided in external and internal
measures. External evaluation measures compare the result of
a single clustering with a known set of class labels (the
“gold standard” or “ground truth”). For our data a “gold
standard” is not known, and consequently, we cannot
consider external cluster evaluation functions. Internal
evaluation measures do not rely on a “gold standard” but

evaluate the clustering based on clustering results and the
classified data set.

The most common cluster evaluation measures consider
the compactness, connectedness, and/or separation of a
clustering. Such general measures, however, do not employ
any specific characteristic of gene expression data. The Figure
Of Merit (FOM) is an internal measure for gene clustering
proposed by Yeung et al. [19] and extended by Datta and
Datta [20] that employs explicitly the redundancies and
correlations often present in gene expression data. In our
application, the level of redundant information is generally
low. As a result, FOM and analysis techniques such as the
overabundance analysis proposed by Ben-Dor et al. [21] are
often not appropriate for our applications but may be
interesting when the cells of the embryo are to be classified
based on the information of a very large number of genes. To
the best of our knowledge, none of these existing cluster
quality measures directly employ the fact that genes are
expressed in characteristic spatial patterns.

Internal cluster quality measures have been used to
estimate the number of clusters k in a data set. Estimation of
an “optimal” k is usually done by computing a series of
clustering results for an increasing number of clusters k. If a
clustering algorithm and an internal evaluation measure are
adequate for the data to be classified, an “optimal” value of
k can often be identified as a “knee” (or elbow) of the
resulting performance curve. Tibshirani et al. [22] intro-
duced the gap statistic, a statistical procedure that formalizes
this heuristic. Milligan and Cooper performed a Monte
Carlo evaluation of 30 procedures for determining the
number of clusters in a data set [23]. Existing cluster
evaluation measures are designed to find “one perfect” k.
As we show later in Sections 4.4 and 5, when clustering cells
in a 3D gene expression data set, we typically find a series
of valid values for k, rather than the one “perfect” k.

To enable visualization of high-dimensional 3D gene
expression data, PCX uses the established concept of linked
multiple views [24]. Henze [25] proposed a system based on
multiple views (termed portraits) for exploration of time-
varying computational fluid dynamics data sets; advanced
queries can be performed by selecting data subsets in these
portraits. In the WEAVE system, a combination of Physical
Views and Information Visualization Views (or abstract
views as we refer to them in this paper) is used for
exploration of cardiac simulation and measurement data
[26]. Doleisch et al. [27] formalized the concept of using
abstract views to define data queries.

It is often useful to interactively select data samples from
a visual data representation, an operation generally referred
to as brushing. A brush is an object that defines one specific
selection of data samples. In PCX, brushing is used in a
variety of views to select groups of cells with respect to
associated quantities. To make this concept more intuitive
to the biologist users, brushes are referred to in PCX as cell
selectors, and the operation of brushing is referred to as cell
selection. Furthermore, cell selectors defined in one view are
also highlighted in all other views, greatly aiding identifica-
tion of further data properties. This process is termed
linking.

PCX was also inspired by the work of Kosara et al. [28],
Piringer et al. [29], and Fua et al. [30], who described several
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important extensions to standard scatterplots and parallel
coordinates that are incorporated as abstract views in PCX
and also used here [4], [5].

4 DATA CLUSTERING AND VISUALIZATION PIPELINE

The PCX processing pipeline consists of two main inter-
connected components: visualization and data clustering.
Visualization provides the ability to explore the data, to
determine appropriate parameters for the clustering, to
validate and analyze clustering results, and to modify
clustering results using several dedicated cluster postpro-
cessing techniques (see Fig. 2). Clustering provides ways for
automatic identification of data features by classifying cells
into groups (the clusters) based on the similarity of their
gene expression profiles. By highlighting clusters in the
visualization, analysis and comparison of specific data
features becomes possible, leading to a much more focused
analysis of the data. Fig. 2’s flowchart shows the basic
structure of the data clustering and visualization pipeline,
as well as the connections between its main components,
which are described in detail in the following sections.

4.1 Visualizing 3D Gene Expression Data

As described above, PCX is a visualization tool specifically
developed for the analysis of 3D gene expression data [4],
[5]. Physical and abstract views are integrated into a
common framework using the established concept of
brushing and linking. In physical views, color and height
are used for visualizing spatial gene expression patterns
(see Section 2). In abstract views, physical cell positions are
ignored and expression levels for multiple genes are plotted
with respect to each other using scatterplots or parallel
coordinates.

Selecting cells of interest can be executed in any view in
PCX. Depending on the view, different data properties are
employed to select cells. User-defined cell selections are then
stored and managed in a central cell selector management
system. Since all views have access to the same set of cell
selectors, features of interest can be defined in any one view

and then further analyzed in any other view (as will be shown
later in Figs. 6, 13, and 14). The most common way to visualize
cell selectors in PCX is to use a consistent color mapping.
Depending on the current view, additional functions for
highlighting cell selectors are available, such as cell selector
bands in two-dimensional (2D) parallel coordinates (see, e.g.,
Figs. 6 and 14).

4.2 Cluster Statistics

Analysis of statistical properties of clusters is essential for
both the validation and analysis of clustering results.
Cluster properties provided by PCX include the percentage
of cells selected by a cluster, as well as the minimum,
maximum, average, and standard deviation values for gene
expression levels in a cluster. To compare these statistical
properties for one gene in multiple clusters or multiple
genes in one cluster, PCX provides box plots and multi-
dimensional color/transparency histogram plots. In histo-
gram plots, we use both color and transparency to visualize
the number of cells within a cluster that express the gene
over a range of expression levels. Average curve plots (with
optional error bars showing standard deviation values) aid
in simultaneous analysis of multiple clusters in multiple
genes. A simple example shown in Fig. 3 illustrates the use
of cluster statistics.

4.3 Data Selection

While it is possible to execute the clustering algorithms on
an entire data set, a more typical use pattern is to focus
clustering on a data subset relevant to a specific line of
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Fig. 2. The data clustering and visualization pipeline. Each box
represents a stage of the pipeline and contains the section number
where we describe that part of the pipeline in this paper. Fig. 3. An analysis of characteristics of the giant (gt) expression pattern

using cluster statistics. (a) An unrolled view showing the spatial structure
defined by five clusters. The red and orange cluster define the centers of
the two expression regions of gt, and the other clusters define the
boundaries. (b) A curve plot showing the average expression profiles of
the genes D, Kr, gt, and hb in each of the five clusters (x-axis). The y-axis
represents the expression level. (c) A box plot comparing the expression
of hb in the five clusters. The x-axis represents the expression level.
(d) A color/transparency histogram comparing the expression of D, Kr,
gt, and hb for cluster p_2 (green). The x-axis indicates the gene
expression level. We use a “heat map” coloring scheme to indicate the
number of cells in the cluster having a given expression level: red
indicates many cells, while blue indicates few cells.
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scientific inquiry. The researcher therefore needs to define
which parts of the data are relevant to address the current
problem. In this section, we describe the different steps
involved in the data selection process, as well as the effects
of data selection on the cluster analysis, and describe how
spatial information can be incorporated in the data analysis
process. In the following two sections, we will then describe
clustering of 3D gene expression data and postprocessing of
clustering results.

Three-dimensional gene expression data can be de-
scribed as a matrix where each row represents one cell and
each column represents one cell attribute, i.e., the expres-
sion of a gene at a specific time point or the x, y, and
z positions of the cells in physical space. In order to define
which parts of the expression data matrix are relevant, one
needs to define 1) which rows (cells) and 2) which columns
(geneþtime point, x, y, and z) are of interest. Note that this
form of data is quite different from that of gene expression
microarray matrices, where each row represents a gene,
and each column represents expression under a different
experimental condition, and spatial relationships are
meaningless.

Cells of interest can be defined in PCX by using any cell
selector or by using the results of a previous data clustering.
Defining cells of interest focuses the analysis on a specific
part of the data and also reduces the impact of surrounding
noise on the analysis. By explicitly allowing data selection
based on cell location, PCX overcomes one of the limitations
of clustering methods designed for expression microarray
data. By using an earlier clustering to define cell subsets of
interest, one can first use PCX to group cells into a smaller
number of clusters representing the predominant data
features and then refine these clusters again using addi-
tional rounds of data clustering. In PCX, data clustering, as
well as validation of clustering results, can in this way be
performed in a step-by-step iterative process.

Defining which cell attributes are of interest is manda-
tory prior to clustering in PCX since these attributes define
the actual biological context of the cells. To account for the
complexities of 3D expression data, a variety of unique cell
attribute data selection strategies is supported within PCX.
First, genes of interest are generally identified based on
visualization of the 3D gene expression data, as well as
based on input from other biological experiments such as in
vivo protein-DNA binding affinity data. Second, to account
for spatial location in the clustering analysis, it is possible to
directly use cell coordinates as input to the PCX clustering
process. Adding this data enforces creation of spatially
separated clusters along the AP ðxÞ and/or the DV (y and z)
body axes. Individual weights can be defined for x, y, and z.
These weights are then considered in the distance metric
(see Section 4.4). However, in most cases, the preferred way
to incorporate spatial information in the analysis process is
by splitting the newly computed clusters into their main
independent spatial components. The main advantage of
such a cluster postprocessing technique over including cell
coordinates in the clustering process is that cells with
similar expression behavior in different parts of the embryo
can be identified, and possible clustering artifacts due to the

mixing of expression and spatial information can be
prevented.

We observed an improved quality of analysis results by
adding spatial information to the clustering process when
classifying the static pattern of a single gene that has a wide
spatial distribution. In the example shown in Fig. 4, we
classified the pattern of the gene giant (gt) using k-means
clustering with and without using x (AP) cell positions in
the clustering process. In the first case, three clusters were
created, each selecting cells expressing gt at different levels,
i.e., low, medium, and high expression (Fig. 4a). By
considering x cell positions, we create separate clusters
for the different major spatial components of the gt
expression pattern (see Fig. 4b). In this case, each cluster
includes only cells that express gt at specific levels, while
the minimum and maximum expression levels selected by
each cluster also depend on its physical location. In this
case, higher threshold levels were created in the anterior,
and lower thresholds were created in the posterior region of
the embryo (see Fig. 4c). Creation of region-dependent
threshold levels is often desirable when analyzing the static
pattern of a single gene since each domain of a pattern may
be regulated differently, and therefore, different thresholds
may be appropriate. For gap genes with spatially distant
independent expression domains, such as gt, this simple
strategy works well, whereas for patterns with shorter
interdomain distances, such as eve, this strategy fails.

4.4 Clustering 3D Gene Expression Patterns

To implement clustering operations in PCX, we use

portions of the open source clustering library “Cluster 3.0”

[31]. We have integrated data clustering directly into PCX

and created a dedicated GUI that provides access to data

clustering and allows management of clustering results.

Clustering algorithms currently available in PCX include

the most commonly used methods for microarray gene

expression data analysis, such as k-means, k-median, and

k-medoid clustering, as well as several hierarchical
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Fig. 4. (a) Giant (gt) expression pattern classified using k-means
clustering with euclidean distances and k ¼ 3. (b) Same, using k ¼ 7
and including x cell positions weighted with 0.24 (after normalization).
(c) A box plot showing the statistics in gt expression (x-axis) for the
two main clusters of the result shown in (a) (first two entries on the
y-axis) and for the four main clusters of the clustering shown in (b).
Including spatial information in the clustering resulted in spatially
separated clusters for the main regions of gt, as well as in different
threshold levels, depending on the physical cluster locations.
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clustering algorithms, and self-organizing maps (SOMs)

[31], [9], [10], [32]. All these clustering algorithms require

an appropriate distance function in order to define

similarity between cells. In PCX, we included the most

common metrics for defining distances in gene expression

space: euclidean distance, city block distance, and several

derivatives of the Pearson correlation [31].

Some clustering algorithms require additional parameters

such as the number of clusters k to be specified by the user. In

the context of 3D gene expression data, there exists in general

not a single “perfect” value for k, but we rather find a

number of valid values, each representing a different level of

detail. This behavior is due to the fact that quantitatively

different expression levels of a gene may lead to multiple

different outputs of the underlying genetic regulatory

network. It is therefore valid to subdivide elongated

structures formed in gene expression space into several

subclusters.
For example, consider early-stage giant (gt) and Krüppel

(Kr), which are expressed in spatially nonoverlapping
patterns, leading to the formation of an L-shaped scatterplot
(see Fig. 5). Even though one could interpret this structure
as one cluster—possibly indicating a NOT relationship
between gt and Kr—it is also valid to subdivide this
structure into, e.g., eight clusters, resulting in one cluster
representing the background expression, a three-level
description of the pattern of Kr, and a four-level description
of the gt pattern.

The choice of k depends on the level of detail required by
the user. Therefore, PCX uses an interactive process to
define k based on visualization. The spatial structure
formed by the cells selected by clusters, cluster statistics,
and standard data visualizations provides a way to decide
if the number of clusters should be increased or reduced.
Depending on the characteristic spatial patterns of genes,
the cells included in a cluster often define some coherent
spatial pattern. Thus, the presence of clusters that show
high spatial scattering may be an indication that the chosen

k was too large. To assist in this evaluation process, we have
developed a dedicated cluster quality measure indicating
the physical scattering of clustering results along with a
function for suggesting a good initial k. These measures will
be described in more detail in Section 5. In Section 6, an
example is provided where the pattern of eve is classified
using different values of k.

Like a manually created cell selector, an automatically
created cluster defines a subset of cells in the embryo and
can therefore be stored and visualized in the same way as
cell selectors. Thus, clustering can be used for highlighting
data features in physical or abstract views, enabling a much
more focused analysis. In the visualization, PCX allows
colors to be assigned to clusters either randomly, manually,
or according to the average or ranked average expression of
a selected gene in each cluster. Using physical views, the
spatial pattern defined by a cluster can be analyzed, and
abstract views allow for identification of cluster character-
istics in gene expression space.

4.5 Cluster Postprocessing

Cluster postprocessing is essential to allow users to modify
clustering results with respect to validation results or prior
knowledge. There are four ways to postprocess clusters in
PCX. Manual correction and cluster filtering are two ways
to correct small groups of misclassified cells. Cluster
merging and splitting provide means to derive coarser or
finer representations based on spatial information from the
initial clustering.

Manual correction of clustering results can be performed
in any physical view. By drawing on the embryo surface,
one can interactively add and erase cells from the selection
defined by a cluster. In contrast, filtering provides an
automatic way to correct misclassified cells. Because genes
are expressed in coherent spatial patterns, outliers in
physical space tend to be also outliers in gene expression
space. Therefore, we have developed a cluster filtering
method that identifies and reassigns misclassified cells to
the spatially neighboring cluster that is closest in expression
space. First, all spatially independent components of a
cluster that consist of less than M cells are identified. To rule
out false filtering, a minimum distance in physical space, as
well as a maximum error in expression space, can be
defined. In the example shown in Fig. 6, it would be possible
to exclude the cells shown in green from the filtering process
either by increasing the minimum spatial distance or by
reducing the maximum allowed error in expression space.

Merging clusters allows coarser representations to be
created from an initial finer clustering. Such coarser
descriptions often provide a clearer visualization that
focuses on the main question being addressed (see, e.g.,
Section 6). Splitting clusters, on the other hand, provides
means to derive a finer representation from clusters based
on spatial information. A cluster often consists of several
spatially independent components (for example, Fig. 12),
which may need to be treated differently in the subsequent
analysis. In general, however, one major component of a
cluster may be defined by a number of small spatially
independent components. PCX uses a modified single-
linkage clustering approach to split up such a cluster into a
selected (often smaller) number of components.
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Fig. 5. An example clustering of giant (gt) and Krüppel (Kr) using
k-means clustering and euclidean distances with k ¼ 8. In the
scatterplot, the structure of the clusters is shown in expression space,
while the unrolled view reveals spatial structures formed by the different
clusters.
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The splitting algorithm works as follows: A cluster is first
split into all its spatially independent components. The
smallest components are subsequently merged with the
spatially closest component. This approach is computation-
ally more efficient and less sensitive to outliers than a
classical single-linkage clustering and also guarantees that
the independent spatial components of a cluster are
preserved while small scattered components can still grow
to define major cluster components. An example for cluster
splitting will be described later in Section 6.

5 IDENTIFYING GOOD VALUES FOR k, THE NUMBER

OF CLUSTERS

Many clustering algorithms, such as k-means, require the
user to specify as an input parameter the target number of
clusters, k. The quality of clustering results often depends
on a proper choice of k. Unless users have a priori
knowledge concerning the number of clusters present in
the data, it is helpful for the user that the software offers a
reasonable initial value for k. Different approaches for
finding an “optimal” k have been proposed. Among them,
those based on internal cluster measures appear to be more
appropriate for our application [18], [23]. Our objective
here, as described below, is to provide the user assistance in
interactively searching for a good k as opposed to trying to
automatically compute the optimal value of k.

Even though internal cluster quality measures (see
Section 3) may be useful here, we are not aware of any such
measure that takes the specific characteristics of 3D gene
expression data into account. Since genes are often ex-
pressed in compact spatial patterns, we expect the derived
clusters to be spatially compact. The presence of computed
clusters with high spatial scattering typically suggest that
the value of k was too large. Because we do not use
information about physical cell position in the clustering

process, spatial compactness is a criterion available as an
independent measure for clustering quality. As we will
discuss below, spatial cluster scattering can also serve as a
measure to indicate a series of adequate values of k.
Combining spatial cluster scattering and the clustering error
in expression space yields a method to identify a good initial
value for k that accurately reflects the structures present in
the data but with relatively low spatial scattering.

We propose to use

"scatterðkÞ ¼
Pk

i¼1 R1ðiÞPk
i¼1 R1ðiÞ

ð1Þ

as an objective measure for the relative spatial scattering of a
clustering result.RsðiÞ (with s > 0) is the number of spatially
independent components of cluster i consisting of at most
s cells. R1ðiÞ thus defines all single cell regions in cluster i.
R1ðiÞ is the total number of spatially independent regions in
cluster i. "scatter 2 ½0; 1� is independent of the clustering
algorithm, usually has discontinuities, and shows a larger
variation for smaller values of k than for large values of k.
Local minima of "scatter indicate values of k for which clusters
are relatively compact and thus indicate a series of
appropriate values of k. In the context of 3D gene expression
data, clustering errors introduced by single cells isolated in
physical space are quite common, and our choice for "scatter

performs well. An alternative approach might work better
when these cluster outliers consist of small groups of cells.
One approach might be a less sensitive weighted cascade
measure that also accounts for larger regions as potential
scatter, such as

"scðkÞ ¼
Pp

s¼1ð1s �
Pk

i¼1 RsðiÞÞPp
s¼1ð1s �

Pk
i¼1 R1ðiÞÞ

;

with p > 0 being much smaller than the number of cells.
To evaluate the clustering error in expression space, we

use "exp, the average distance, in expression space, of a cell
to the center of the cluster it belongs to:

"expðkÞ ¼
1

n

Xn
i¼1

dist centerðciÞ; cið Þ; ð2Þ

where n is the number of clustered cells, ci is the ith cell,
centerðciÞ is the center of the cluster to which ci belongs, and
distð�; �Þ is the distance operator used in the clustering
process.

We compute "scatter and "exp for 2 � k � m, with m being
the first value where "scatter > 50 percent. If the pattern of only
one gene is used in the clustering, we use "scatter > 60 percent
as the termination criterion instead because variations in the
background expression have a stronger impact on the cluster
analysis and because more complex structures are possible
when multiple genes with spatially overlapping patterns are
clustered. By using these thresholds for "scatter, we ensure that
we iterate over all potentially useful clusterings and do not
terminate prematurely. We use k ¼ 2 as the starting point
because it represents the first potentially useful clustering.
Furthermore, considering the relatively large value of "expð1Þ,
starting at k ¼ 1 would result in a suggested value for k that is
too small.

70 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 7, NO. 1, JANUARY-MARCH 2010

Fig. 6. Filtering applied to an example cluster. The cluster is split into its
four independent spatial components (red, blue, and two shown in
green). The profiles of these regions in gene expression space are
shown in parallel coordinates. Here, the genes slp1, hb, Kr, gt, kni, and
tll, which were used to obtain this clustering result, are each represented
by one axis, and the percentage of expression is shown in ordinate
direction (y-axis). One can see that the blue cells are spatially more
distant to the main component of the cluster (red) than the green cells
and that they show a higher divergence from the main spatial
component of the cluster in gene expression space.
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To identify a value w for k for which the error in
expression space is sufficiently low to well characterize the
data, we identify the first k for which the decrease in "exp is
lower than the average decrease ��"exp

¼ "expð2Þ�"expðmÞ
m�2 . Alter-

natively w could also be defined as the k that corresponds to
the point of the "exp evaluation curve that is furthest from the
line defined by "expð2Þ and "expðmÞ [33]. While the first
approach tries to find the k for which the expression error
has sufficiently decreased, the second approach tries to
identify the so-called “knee” of the "exp evaluation curve.
Both methods depend on m, but this dependency is well
behaved, i.e., with increasing m, the suggested w changes
slowly and continuously. During the research and develop-
ment of this work, both methods seem to work equally well.

We use the following algorithm to identify a good
initial k > w that also results in a relatively low physical
scattering:

k ¼ wþ 1;

l ¼ k;
for i  l to m

do

if "scatterðiÞ < "scatterðlÞ þ tð Þ

then

k ¼ i
if "scatterðiÞ < "scatterðlÞð Þ

then l ¼ i:

8><
>:

8>>><
>>>:

Initially, k is set to wþ 1, which is the lowest value that
results in a sufficiently low expression error. Then, the
algorithm tries to optimize the expression error, as well as
the physical scattering, by searching for a k > w that also
results in a relatively low physical scattering. Here, we use a
threshold of t ¼ 4 percent—determined through empirical
testing—to restrict the maximal allowed increase in "scatter

with respect to l, i.e., the k with the lowest relative physical
scattering visited so far. Since "exp decreases with increasing
values of k, the error in expression space for the suggested k
is guaranteed to be smaller than "expðwÞ.

Alternatively, one can also view the problem of finding a
good initial k as an optimization problem by looking for the
k that minimizes "totalðkÞ ¼ j�"expðkÞ � 1

w
�"scatterðkÞj, where

both "exp and "scatter are normalized. Conceptually, the first
approach is more intuitive, does not require normalization
of the evaluation functions, and will always suggest a
minimum of "scatter if an adequate local minimum exists.
Using "total for finding a good initial k has the advantage

that it does not rely on a threshold t. Furthermore, it may
result in a more reliable suggestion in cases where "scatter is
degenerate since "total does not directly rely on the notion
that the physical scattering increases with increasing values
of k. In practice, both approaches have shown to be useful.

Beginning with an initial suggested value of k, the user
can then determine the “best” k based on the information
from the cluster evaluation and previews of the different
evaluated clustering results using an Unrolled View. Even
though the initial suggested value of k may not always be
optimal, our testing has revealed that there is value in
providing a “reasonable” value or range of values for k.

Fig. 7 shows the cluster evaluation functions for the
clustering of gt and Kr. To provide an overview of both
functions in one plot, we show "scatter along with
~"expðkÞ ¼ "expðkÞ

"expð2Þ . The suggested k is eight, which is also a
strong local minimum of "scatter. The corresponding
clustering result for k ¼ 8 is shown in Fig. 5. Fig. 8 shows
two additional example classifications of gt and Kr
using k ¼ 5 and k ¼ 19. k ¼ 5 is the highest level for
which "scatter ¼ 0, and k ¼ 19 is a local minimum of
"scatter ð"scatterð19Þ � 35:29 percent) close to the middle of
the range. Here, we see that the suggested level of k ¼ 8
provides a good compromise between high-level and low-
level descriptions of the patterns. The value of k that is best
suited to investigate a biological question depends to a
large degree on user requirements. More example usages
of "scatter and "exp are provided in Sections 6 and 7.
"exp and "scatter are global cluster quality measurement

functions in the sense that the clustering quality is
evaluated based upon the entire data set (in this case, all
classified cells). Global error measures might not be
appropriate if the user performs a clustering of a larger
number of cells but is interested only in a small subset of
clusters defining some local feature of interest.

6 SINGLE-PATTERN ANALYSIS

Genes are frequently expressed in complex patterns that
show a wide range of quantitative changes in expression
across the cells of an embryo. Although for some analyses,
the data are best left unclassified in this form—simply using
the expression values in all cells—it can also be revealing to
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Fig. 7. Cluster evaluation functions ~"exp (red) and "scatter (blue) for the

clustering of gt and Kr, with w ¼ 5 and m ¼ 36. The suggested k is eight,

as shown in Fig. 5.
Fig. 8. The patterns of gt and Kr are classified using k-means clustering,

as in Fig. 5, but with (a) k ¼ 5 and (b) k ¼ 19. One can see that the

suggested k ¼ 8 provides a compromise between a high-level descrip-

tion, as shown in (a), and a detailed description, as shown in (b).
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divide a single pattern into one or more distinct regions. For
example, on/off descriptions of expression have been
useful in logical models of gene networks [34], [35].

However, discretizing a gene pattern via manual thresh-
olding can be problematic—it may be very time consuming,
and the choice of thresholds is arbitrary and not fully data
dependent. To address this challenge, one can use, for
example, k-means clustering and euclidean distances to
compute a number of data-dependent thresholds. Each of
the k clusters then represents a specific threshold range that
can be interpreted as a different confidence level. Different
components of a pattern may be regulated by different
genes, so different thresholds may be appropriate for
different regions. Cluster postprocessing such as splitting
clusters into their main spatial components allows different
threshold levels to be selected for different components of a
gene pattern. Alternatively, as described in Section 4.3, for
genes with clearly distinct spatial expression domains, cell
positions may be used in the initial clustering to enforce
creation of separate clusters for spatially distant compo-
nents of a pattern. Rather than choosing some arbitrary
thresholds, clustering automatically suggests thresholds
based on the histogram of the data. The k-means clustering
algorithm seeks to minimize the mean squared distance
from each data point (cell) to its nearest cluster center. To
achieve this goal, the k-means algorithm will create k cluster
centers positioned according to the density distribution of
the expression values of the selected gene.

Fig. 9 shows three example classifications of the eve
expression pattern using different numbers of clusters k.
While k ¼ 2 produces a threshold that is too high and does
not capture all parts of each stripe, a clustering with k ¼ 3
correctly identifies the seven stripes of the eve expression
pattern. By increasing the number of clusters, additional
details within the stripes along the dorsal-ventral (DV) axis
can be seen, as well as an additional cluster selecting cells in
the interstripe regions. This complex description illustrates
that thinking of a gene as being either on or off is usually
too simplistic. The fact that clustering automatically reveals
differences along the DV axis demonstrates the usefulness
of such analyses. The pair-rule genes such as eve are not
typically thought of as DV regulators but are consistent
with the clustering results, careful quantitation of the levels
of eve and a similar gene’s expression has shown that they
indeed show up to twofold changes in expression along the
DV axis, suggesting a DV component in pair-rule regulation

[3], [2]. Analyzing the actual meaning of these moderate
changes requires computational tools such as cluster
analysis to provide objective measures of their significance.

Fig. 10a shows the curves of the cluster evaluation
functions "scatter and ~"exp. In this case, "scatter is rather smooth
and monotonically increasing, indicating that all k with
"scatter > 0 may result in valid clusterings of the eve pattern.
This behavior can be explained by the very high signal-to-
noise ratio of the eve expression data, which was averaged
from dozens of embryos. The suggested k is five, which is
the largest k for which only one cluster representing a low
eve expression is created (see Fig. 10b). A clustering with
k ¼ 5 provides a compromise between a high-level and low-
level description of the eve expression pattern.

Binarized versions of the eve pattern (i.e., on/off
descriptions) can be created by merging the different
clusters, allowing one to easily compare the different
classifications by defining their overlay (see Fig. 11). While
k ¼ 3 and k ¼ 6 result in similar classifications of the seven
stripes, the clustering with k ¼ 2 misses many cells of the
pattern. Thus, first generating multiple clusters and then
merging them can provide a more accurate binarization of
an expression pattern than an initial k ¼ 2.

Cluster merging and splitting can also be useful for
comparing different gene patterns or for comparing
different components of a single gene’s pattern. In Fig. 13,
for example, the individual clusters shown in Fig. 9d have
been merged and then split to obtain one cluster represent-
ing each stripe. Fig. 12 shows an example where the cluster
that defined the boundary of the stripes, consisting of
296 spatially independent components, is split into its seven
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Fig. 9. (a) The expression pattern of eve at stage 5 : 9-25 percent. Classification of eve with (b) k ¼ 2, (c) k ¼ 3, and (d) k ¼ 6. While the

k ¼ 2 clustering produced a threshold that was too high, erasing too many cells from the pattern, the k ¼ 3 clustering was better able to identify the

seven stripes of the eve expression pattern. The k ¼ 6 clustering identified additional characteristic variations within the stripes along the DV axis, as

well as an additional cluster that selects some interstripe cells showing some higher expression of eve.

Fig. 10. (a) Cluster evaluation functions ~"exp (red) and "scatter (blue) for
the clustering of the eve expression pattern, with w ¼ 4 and m ¼ 9.
(b) The suggested k is five, which is the largest k for which only one
cluster representing a low background eve expression is created.

Authorized licensed use limited to: Lawrence Berkeley National Laboratory. Downloaded on August 10,2010 at 21:28:35 UTC from IEEE Xplore.  Restrictions apply. 



main components using the modified single-linkage meth-
od described in Section 4.5.

Once derived, we use these individual stripe clusters to
highlight the seven eve stripes via color in different abstract
views. For example, the expression behavior of gt, hb, and
Kr—three known transcriptional regulators of eve—can be
revealingly analyzed within each of the eve stripes using a
3D scatterplot (Fig. 13). Here, large differences between
stripes are visible, the seven stripes form very distinct point
clusters within the scatterplot. This behavior is consistent
with current models suggesting that the eve expression
pattern does not simply consist of seven identical stripes
but that many stripes are regulated independently. The
available data suggest that gt, hb, and Kr control some
stripes, but the scatterplot suggests that these factors have
the potential to regulate all stripes by their unique
combinations of expression levels. Such plots can be very
useful in identifying potential novel regulatory relation-
ships between transcription factors and their targets.

Generally, scatterplots have proven to be a very intuitive
and informative gene expression space visualization but are
limited due to the fact that only three gene dimensions can
be visualized at once. PCX also provides 2D and 3D parallel
coordinates to support simultaneous visualization of many
more genes [4]. In Fig. 14, the same clusters as in Fig. 13 are
shown in a 2D parallel coordinate view of early-stage hb, gt,
kni, Kr, and tll, indicating additional expression differences

between the spatial clusters. Because numerical PointCloud
data sets are not easily comprehensible, the clustering and
cluster manipulation capabilities in PCX provide a reason-
ably objective method for dividing quantitative spatial
expression data into computationally analyzable units.

7 TEMPORAL VARIATION ANALYSIS

Gene expression patterns are not static but highly dynamic.
Understanding the temporal profile of a gene expression
pattern is essential if we are to understand the complex
relationships between genes. Even though visual inspection
of an expression pattern at different time steps provides an
impression of the general temporal behavior of a gene,
many important features such as groups of cells with a
similar temporal expression profile are not easily detected,
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Fig. 11. Comparison of the clustering results shown in Fig. 9.
(a) Comparison of k ¼ 2 (red) and k ¼ 3 (blue) classification of eve.
(b) Comparison of k ¼ 3 (red) and k ¼ 6 (blue) classification of eve. In
(b), the additional interstripe cluster found in the k ¼ 6 clustering is
shown in dark green. The percentage of cells of the whole embryo
selected by the different components are k2 ¼ 31:31 percent,
k3 ¼ 42:596 percent, k6 ¼ 42:892 percent, k3� k2 ¼ 11:287 percent,
k6� k3 ¼ 0:296 percent, and k6 interstripe cluster ¼ 21:06 percent.

Fig. 12. (a) A cluster consisting of 296 spatially independent

components. (b) The same cluster split into its seven main spatial

components. Splitting of clusters is essential, e.g., to allow comparison

of different main spatial components of a cluster.

Fig. 13. An unrolled view showing seven clusters, each selecting one
stripe of the eve expression pattern (bottom left). The same clusters
shown in a scatterplot of early-stage Kr (red), gt (green), and hb (blue).
The color indicates to which cluster a cell belongs, while cells not
selected by any cluster are colored gray. The stripes form characteristic
clusters in expression space, indicating a potential relationship between
eve and the displayed genes.

Fig. 14. The same clusters as in Fig. 13 are shown in a 2D parallel
coordinate view of early-stage hb, gt, kni, Kr, and tll. The average
expression of the seven clusters in the different genes are shown via
additional thicker lines of darker colors, and the associated standard
deviations are shown via boxes placed on each parallel axis. Highly
transparent color bands shown in front of the plot are used to further
highlight the different clusters.
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and visual quantification of temporal change is not
accurate. For example, the pattern of giant (gt) expression
can be seen to change between six time cohorts within
1 hour, but it is not possible to rigorously describe how (see
Fig. 15). To show how PCX can assist in the analysis of the
spatiotemporal expression pattern of genes, we have used
clustering to classify cells into groups of similar temporal
behavior.

In Fig. 17, the curves of the cluster evaluation functions
"scatter and ~"exp are shown. The suggested number of
clusters k is 17, which is also a local minimum of "scatter with
"scatterð17Þ � 31:88 percent. The overall behavior of "scatter

indicates that k ¼ 17 is the largest k at the particular level of
detail for which "scatter is still relatively low. A comparison of
"scatterð17Þ to the next two lower local minima of "scatter—with
"scatterð12Þ � 31:21 percent and "scatterð10Þ � 29:25 percent—
shows only a moderate increase in "scatter. When comparing
"scatterð17Þ to the "scatter values of the next two larger local
minima of "scatter—with "scatterð19Þ � 36:34 percent and
"scatterð22Þ � 40:14 percent—a significantly higher increase
in relative physical cluster scattering is visible. This behavior
can be interpreted as an indication that k ¼ 17 may

also provide a good compromise between a high-level and
low-level description of the temporal variation of the
gt expression pattern. A level of k ¼ 17 was also confirmed
to be appropriate by users of PCX.

Fig. 16 shows as an example the result for gt, in which its
expression patterns at six successive time cohorts were
classified into 17 clusters using k-means clustering and
euclidean distances. Two of the 17 clusters selected cells
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Fig. 15. The expression pattern of giant (gt) shown at six different time cohorts of stage 5 of embryo development.

Fig. 16. Based on the patterns of gt shown in Fig. 15, cells were classified into 17 clusters, as suggested by "scatter and "exp. Two clusters selected
cells showing only background expression of gt at all time steps and are therefore not shown here. Clusters 1, 8, and 16 were each split into their two
main spatial components. The remaining clusters were not split, since no significant divergence in the temporal expression profile between their main
spatial components could be identified. (a) An unrolled view showing all 18 clusters of interest. (b), (c), (d), (e), (f), (g), (h) The user grouped the
18 temporal clusters into seven main groups based on their average temporal expression profiles in gt. The six time steps are shown on the x-axis,
and the expression level is shown on the y-axis of each plot. The spatial patterns defined by the different clusters are displayed in the accompanying
unrolled view plots.

Fig. 17. Cluster evaluation functions ~"exp (red) and "scatter (blue) for
the clustering of the six time steps of gt with w ¼ 10 and m ¼ 54.
The suggested k is 17. "scatter further indicates that 17 is the
highest k for the particular level of detail with relatively low overall
physical cluster scattering.
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showing only background expression at all time steps and
are not shown. Each of the other 15 clusters show distinct
average expression profiles (the differently colored lines
plotted in Fig. 16), though some clusters show profiles that
are closely related. In the figure, the user has grouped these
clusters into seven main subgroups based on their temporal
average expression profiles, shown in Figs. 16b, 16c, 16d,
16e, 16f, 16g, and 16h. In addition, clusters 1, 8, and 16 have
each been split into two components to separate their
anterior and posterior components.

Several trends can be readily seen from the different
views of the analysis. The unrolled physical views show
that clusters with similar average temporal expression
profiles are frequently but not always adjacent to one
another in the embryo. Expression within a set of clusters in
the very anterior of the embryo increases, particularly
during the later time cohorts (visible, for example, in
Fig. 16b). Expression in the posterior margins of both of the
major early gt stripes drops rapidly over the time series
(Figs. 16f, 16g, and 16h). It is known that the location of the
posterior gt stripe moves anteriorly during this time series
[36], [3], but the data show a much more complex pattern of
temporal change than has been observed previously. These
results suggest that a complex combination of regulatory
interactions drives these patterns.

8 MULTIPLE-PATTERN ANALYSIS

To dissect the complex regulatory interactions between
genes, the expression patterns of different transcription
factors that potentially act together as regulators may be
used as input to cluster analysis. Cells are classified into
clusters that have similar combinations of expression for the
input set of regulators. Each cluster thus describes one
potential subpattern that a regulatory network composed of
these factors could give rise to. The total number of clusters
then gives an approximation of the maximal complexity of

the output of the network. The results of such a clustering
can also be compared to the expression patterns of suspected
target genes to assess possible regulatory relationships.

To provide an example of such multigene clustering, we
examined the relationship between the three transcriptional
regulators giant (gt), hunchback (hb), and Krüppel (Kr) and the
second stripe of the eve gene. These three factors are well-
characterized regulators of this expression stripe; hb is an
activator, and Kr and gt are repressors [37]. As discussed in
Section 6, the seven stripes of eve form characteristic clusters
in gene expression space with respect to gt, hb, and Kr
expression. By using these three factors’ expression patterns
as input to a clustering analysis, we can identify the
potential expression pattern components that can be
defined based on these regulators (see Fig. 18). We used
their mRNA expression values from the first temporal
cohort (0 percent-3 percent invagination) to simulate their
protein expression values at the third temporal cohort
(9 percent-25 percent invagination)—the stage of the eve
comparison target. We have found this lag, on the average,
to be optimal for all regulators [7]. In the example, cells are
classified into 22 clusters that map to locations throughout
the embryo. Eight of these clusters are of interest to the
control of eve stripe 2, five of which lie within the stripe and
three are in the flanking interstripe regions. The five clusters
within stripe 2 define the center, the anterior and posterior
borders, and a ventral portion of the stripe, suggesting that
these characteristic parts of stripe 2 may be different (see
Fig. 18b).

To validate the structure formed by the clusters against
the target pattern, cluster colors are mapped onto an
expression surface of eve, in which the height shows the
level of expression (Fig. 19). It can be seen that the five
clusters fit closely to the expression pattern of the target
stripe 2.

Based on the average expression curves, the character-
istic expression pattern of the potential regulators in the
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Fig. 18. (a) The transcription factors gt, hb, and Kr at stage 5 : 0 percent-3 percent are used as input to the clustering; their potential target is eve
stripe 2 at stage 5 : 9 percent-25 percent (see Section 6). (b) Cells were classified into 22 clusters of which eight are of particular interest. Five
clusters actually model eve stripe 2, and three define the interstripe region between stripes 1 and 2 and stripes 2 and 3. Cluster filtering was applied
to three single cells only. Clusters were split in order to separate the stripelike clusters with similar expression profiles from other spatially distant
subclusters in the anterior and posterior regions of the embryo. (c) An average curve plot of the five clusters within eve stripe 2 showing the
characteristic expression profiles of Kr, gt, and hb. (d) Average expression curves for the three interstripe clusters. In both average curve plots, Kr,
gt, and hb are shown on the x-axis, and the level of expression is shown along the y-axis.
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eight clusters that are within and flanking stripe 2 are easily
visible (see Figs. 18c and 18d). Here, hb is expressed at high
levels in all clusters except those that are posterior of
stripe 2, consistent with its known role as an activator of
stripe 2. Kr is expressed at high levels only at the posterior
of stripe 2, and gt is expressed at high levels only at the
anterior of stripe 2, consistent with their known roles as
repressors that define the posterior and anterior borders of
stripe 2, respectively.

Interestingly, the two clusters that form short ventral
patches on eve stripe 2 (yellow and blue) show a significantly
lower expression of hb than the two clusters that lie dorsally
to them (red and green) (see Figs. 18c and 18d). This
correlates with a lower level of eve expression in this ventral
margin (Fig. 19) and suggests that this reduced expression
may be the result of a lower activation by hb. hb is typically
thought of as a regulating gene expression only along the
anterior/posterior axis of the embryo. The cluster analysis
suggests that it may also be able to mediate differential
transcription along the DV axis. However, if we were to add
a DV gene such as snail (sna) (see Fig. 1) into the analysis, it
would be difficult to distinguish if the ventral gap in eve
stripe 2 resulted from direct inhibition by sna if sna acted via
inhibiting ventral hb expression or if all three expression
patterns are parallel manifestations of DV patterning
systems, each acting separately. Thus, cluster analysis can
be used for identifying interesting correlations that might
result from novel biological interactions or phenomena, but
the analyses should be confirmed by experimental data.

This case study illustrates that clustering the expression
patterns of multiple regulators can provide confirmation
and additional insights into known regulatory interactions.
It is likely that the extension of this strategy to less well-
characterized systems will suggest potential regulatory
interactions that can then be tested by other means.

9 CONCLUSIONS

Our overall objective for this work has been to provide
important new capabilities to accelerate scientific knowl-
edge discovery. Our work helps biologists, who aim to
discover potentially new experimentally verifiable biologi-
cal interactions, by providing the ability to define, analyze,

and iteratively refine clusters in multiple linked views. For
computational biologists, we have presented objective
methods for classifying quantitative data points in spatial
data sets.

We have shown how data clustering and visualization
can be integrated into one framework and how our system
can be used effectively to explore and analyze 3D spatial
expression data. A system of linked multiple views is used
for data exploration and for steering the analysis process,
helping bridge spatial patterns of expression with abstract
views of quantitative expression information.

Data clustering then provides means for automatically
defining cell selections, depicting characteristic data fea-
tures, and, in this way, improving the visualization. We
have shown how dedicated postprocessing of clustering
results based on visualization and user knowledge im-
proves the analysis. We have demonstrated how the
combination of "scatter as a measure to describe the relative
physical scattering of clustering results and "exp as a
measure to suggest a good initial value for k in combination
with visual validation of clustering results can be used to
determine appropriate values for k.

Analysis of 3D spatial gene expression data is a
challenging task, requiring unique strategies not encoun-
tered in studies of 1D nonspatial data such as microarray
expression data. Using our integrated data visualization
and clustering approach, we have shown how the pattern of
a gene and its temporal variation can be defined and
analyzed. We have shown how suspected relationships
between genes can be analyzed to address the question of
how the pattern of a gene is created by the action of
multiple regulators.

Along with the first release of the BDTNP 3D gene
expression database, we have also made a version of PCX
freely available to the public [1]. Data clustering and
3D parallel coordinates are currently in active use by
BDTNP members and will soon also be included in the
public version of PCX.

In PCX, spatial information is incorporated in the
analysis process mainly by using cluster postprocessing
techniques such as splitting of clusters. Alternatively, the x,
y, and z cell positions can be directly added to the cluster
analysis. However, this may result in clusters defined by a
complex mix of spatial and expression influences, which
may not be easy to interpret.

The development of additional analysis techniques that
effectively integrate spatial and gene expression informa-
tion is one focus of future work. Adaptation of spatial
clustering methods such as the dual clustering approach
proposed by Cheng-Ru et al. [38] is only one promising
approach. Alternatively, one could perform clustering
based on gene expression information only, then split the
resulting clusters into spatially distinct subclusters, and
then perform a reclustering based on the centers of the
detected subclusters. In PCX, we currently use hierarchical
clustering only for the partitioning of the data. By traversing
the data hierarchy created in a hierarchical clustering,
exploration of the data at multiple levels of detail becomes
possible. In addition to clustering of cells, clustering of
genes, as well as biclustering, promises to provide further
insights into the data. In addition, matrix decomposition
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Fig. 19. To validate the structure formed by the five clusters against the

target, cluster colors are mapped onto an expression surface of eve,

where the surface height shows the level of eve expression. The

visualization shows that the clusters and the target stripe fit closely.
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techniques such as principal component analysis (PCA) and

singular value decomposition (SVD) [39], [40] have success-

fully been applied to other types of gene expression data.

Integration of these and other analysis techniques into PCX

should further increase its value for practical use and

impact.
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